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Outline 

1.  AMD and Cray Roadmaps 

2.  OpteronTM Multi-Core Architectural Overview 

3.  NUMA: Multi-socket and Multi-core considerations 

4.  Programming Hints and Performance Case Studies 
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Cray and AMD  
Tools for Breakthrough Science 

University of Bergen - 50 TF XT4 

ARL  
• 10,400 core XT5 (Barcelona)  
• 1,952 cores XT5 (Barcelona) 

CSC Finland – 86.7 TF enroute to 100+ TF 

NERSC Franklin – 356 TF 

NAVO – 117 TF XT5 

ARSC – 31.8 TF XT5 

UT et. al. NSF Track II – (big!) 

Sandia Red Storm – 284 TF XT4 

Many Sites, Multiple Disciplines 
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A Strong Partnership in HPC:  
Past, Present, and Future 

Multithreaded 

Cray XT4 

Cray XMT 

Cray XT5  
& XT5h 

“Granite” 

Vector 

“Baker” 

“Marble” 

“Baker”+ 

CX1 

Scalar 
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AMD Cross-Generation x86 Server Platforms 
Roadmap 

Dual 
Core Quad-Core 

Currently Shipping DDR2 Platforms 
DDR2 Memory with AMD-V™ Technology 

Maranello 
New DDR3 Platform 

“Magny-Cours” 
“Sao-Paolo” 

Longevity – long platform life 
Flexibility – power vs. performance choice 

“Istanbul” 
6 Core 

“Shanghai” 
Quad-Core 

Fiorano 
Next-Generation DDR2 Platform with 

Improved Virtualization Features 



| Architecture of the AMD Quad Core CPUs | April 13, 2009 6 

Cray XT5 Blade and Compute Node 
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Cray 
SeaStar2+ 

Interconnect 

Memory 

Four Compute Nodes per Blade 
(2 cpus per node) (Node) 

Eight OpteronTM cpus 
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“Barcelona” to “Shanghai” 
What’s New  
•  65nm to 45 nm 

•  Higher GHz 
•  Lower Power 

•  2M L3 to 6M L3 
•  Lower Latency L3 
•  Prefetcher tweaks 
•  DDR2-800 support 
•  HT3 HyperTransport™ 

Shanghai 
vendor_id   : AuthenticAMD
cpu family  : 16
model       : 4
model name  : Quad-Core AMD Opteron(tm) Processor 8387
stepping    : 2

Barcelona 
vendor_id   : AuthenticAMD
cpu family  : 16
model       : 2
model name  : Quad-Core AMD Opteron(tm) Processor 8356
stepping    : 3

barcelona 

shanghai 

(note: not to same scale) 
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“Barcelona” to “Shanghai” 

“Barcelona” Features New With “Shanghai” 
65nm Technology 

AMD Balanced Smart Cache 

HyperTransport™ Technology 1.0 @  
up to 8GB/s* 

AMD Memory Optimizer  
Technology 

Drop-in Upgradeability 
Investment Protection 

45nm Technology 
Significantly reduced power & 

increased frequency 
L3 grows to 6MB (8MB total cache) 

2x more expected to improve application  
performance by 5-10% 

HyperTransport ™ Technology 3.0 @  
up to 4.4GTs or 17.6GB/s* 

DDR2-800 Memory Support 
(Up to 10% greater delivered  

memory bandwidth) 

Continued Drop-in Upgradeability 
Investment Protection 

Cache ECC & scrubbing, CPU and 
Northbridge watchdogs 

L3 cache Index Disable 
(Designed to protect data against  

L3 cache errors) 

Products range from 2.0 to 2.3 GHz 
(standard 75W power) 

Products range from 2.3 to 2.7 GHz 
(standard 75W power) 

* bi-directional 
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Core Micro Architecture  
FastPath? Macro-Ops? Micro-Ops?  

Micro-Ops 

Macro-Ops 

X86 Insts. 

Macro-Ops tracked  ReOrder 
Buffer (ROB). 
•  72 entries (3 wide x 24 deep) 
•  In-order dispatch, retirement 

Micro-Ops issue from Sched to 
Execution Units 
•  “Sched” aka “Reserv. Station” 
•  Out-of-order issue 
•  FP scheduler shared across units 
•  INT Schedulers are “per unit” 

Three Decode Categories 
(FastPath also called DirectPath) 
•  DirectPath Single - best 
•  DirectPath Double - better 
•  VectorPath (microcode) - good 

Avoid having more than 2 or 3 
branches per 16B of instructions. 

Improved Out-of-Order Load Execution 
In-Order Address Generation (per AGU) 
Store-to-Load Forwarding Support 

Reference : Software Optimization Guide for 
AMD Family 10h Processors,  
Pub. #40546, Rev. 3.10 Feb 2009 

Notes / Considerations 
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Relating Micro-Architecture to Programming 

Micro-
architectural 
feature 

Rely on 
Compiler 
Magic? 

Coerce 
Compiler 
using flags 

Tweak Src 
Code to help 
Compiler 

Examples 

Direct / uCode  Yes Difficult Difficult •  (not much programmer can do to control) 

3 wide super-
scalar design 

Yes Difficult Sometimes 
Useful 

•  Computational Intensity of loops (CrayPAT). 
•  Write Vectorizable loops. 
•  Independent Ops. Vs Dependency Chains 
within code blocks. 

Cache Sizes 
and 
Geometries 

Yes Yes Yes •  Cache Blocking of Loops. 
•  Array padding. 
•  Prefetch and Streaming Store compiler flags 

Branch Pred., 
Address Gen. 

Yes Difficult Yes •  Unrolling & good branch-to-code density. 
•  Help Compiler to Inline (“static” funcs. in C). 
•  Hoist common code and order “if” 
statements for most common cases. 
•  Simple addr. calcs before complicated ones. 

Ld/St BW + # 
of Func. Units 

Yes Yes Yes •  Computational Intensity of loops (CrayPAT) 
•  Prefetch and Streaming Store compiler flags 

Ld/St BW + 
Reg.  File Size 

Yes Maybe •  Help with idiom recognition and use 
algorithmic knowledge. (e.g. grid sweeps) 
•  Aliasing hints (via flags and careful ptr use) 

Data 
Alignment 

Yes Yes Yes •  Declares struct elements largest to smallest 
•  Buffer padding and pointer adjustment. 
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TLB Review (Barcelona, Shanghai, Istanbul) 
•  Support for 1GB pagesize (4k, 2M, 1G) 

•  48 bit physical addresses = 256TB (increase from 40bits on K8) 

•  Data TLB 

•  L1 Data TLB 
•  48 entries, fully associative 

•  all 48 entries support any pagesize 

•  L2 TLB 

•  512 4k entries, and 

•  128 2M entries 

•  Instruction TLB 

•  L1 Instruction TLB 

•  fully associative 

•  support for 4k or 2M pagesizes 

•  L2 Instruction TLB 
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Data Prefetch: Review of Options 

  Hardware prefetching 
– DRAM prefetcher 

  tracks positive, negative, non-unit strides. 
  dedicated buffer (in NB) to hold prefetched data. 

  Aggressively use idle DRAM cycles. 

– Core prefetchers 
  Does hardware prefetching into L1 Dcache. 

  Software prefetching instructions 
– MOV (prefetch via load / store) 
–  prefetcht0, prefetcht1, prefetcht2 (currently all treated the 

same) 
–  prefetchw = prefetch with intent to modify 
–  prefetchnta = prefetch non-temporal (favor for replacement) 
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Cache Hierarchy 

Dedicated L1 cache 
–  2 way associativity. 

–  8 banks. 

–  2 128-bit loads per 
cycle. 

Dedicated L2 cache 

–  16 way associativity. 

Shared L3 cache 
–  32 way (barcelona),  

48 way (shanghai) 
associativity. 

–  fills from L3 leave 
likely shared lines in 
L3. 

–  sharing aware 
replacement policy. 

2 to 6 MB 

Cache 
Control 

64KB 

512KB 

Core 1 

Cache 
Control 

64KB 

512KB 

Core 2 

Cache 
Control 

64KB 

512KB 

Core 3 

Cache 
Control 

64KB 

512KB 

Core 4 
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Shanghai to Istanbul 

•  6 cores (~1.5X flops) 
•  Same per core L1 & L2 
•  Same shared L3 
•  NB & Xbar upgrades (going from 4 to 6 cores) 

•  HT Assist – provides 3 probe scenarios 
•  No probe needed 
•  Directed probe 
•  Broadcast probe 

• Memory BW and latency improvement  
•  Amount depends on platform and configuration 

•  Socket Compatibility 
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Socket Compatibility: 4P/16cores  4P/24cores 
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HT Assist (Probe Filters) 
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Multi-Socket System Overview 

MCT 
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MCT 
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core0 
core1 
core2 
core3 

cHT 

DRAM DRAM 

XBAR 

I/O I/O 

key: 
  cHT = coherent HyperTransport 
  ncHT = non-coherent HyperTransport 
  XBAR = crossbar switch 
  SRI = system request interface (memory access, cache probes, etc.) 
  MCT = memory controller 
  HB = host bridge (e.g. HT to PCI, SeaStar, etc.) 

Inter-socket Probes and Probe Responses travel: 
SRI -> XBAR -> cHT -> cHT -> XBAR -> SRI 

Probes Requests initiate at home memory node, but 
return directly to node making initial memory request. 

(Two Socket System) 
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MOESI Cache Coherency Protocol 

Invalid Exclusive 

Modified 

Owned 

Shared 

Read Hit 
Probe Read Hit 

Read Hit 
Write Hit Probe Read Hit 

Write Hit 

Probe Write Hit 

Read Miss Exclusive 
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Read Hit 
Probe Read Hit • “Read” and “Write” are by this core. 

• “Probe Read” and “Probe Write” are 
reads and writes by others, that must 
probe this core’s caches. (May consider Owned as 

special case of Shared) 

Read Hit 

Write Hit 
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HT (Hyper Transport) Assist Benefits 

•  Tracks cacheline usage and eliminates much Probe Traffic 
from HT Fabric. 

•  Cache misses going to memory often avoid probing entirely. 
•  Write upgrade to M state often results in directed probes or 
no probes. 
•  Read of shared data will often result in a directed probe. 
•  Worst case requires broadcast (i.e. pre- HT Assist behavior). 

Node 0 

Node 2 Node 3 

Node 1 

Broadcast 
Probe 
Response 

Directed 
Probe 
Response 

(Nodes 2 & 3 
connected 
but no traffic 
in this ex.) 

No Probe 
Mem. Req. 
Mem. Resp. 
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Cache Coherency – Practical Advice 

•  Avoid shared read and shared write data in same cacheline. 
•  Avoid gratuitously modifying shared data. 

–  Sharing aware L3 helps within a chip, but doesn’t make such 
updates free. 

–  Minimize false sharing where compiler has to play it safe. 

•  Requirement to wait for all probe responses means local 
memory and remote cache accesses have similar latencies. 

–  Sometimes thinking of just memory is just fine.  
–  Let library and compiler writers worry about being uber-clever. 

•  Aliasing, Aliasing, Aliasing of addresses. (Help the compiler). 
–  If compiler’s unsure about potential aliasing it must play it safe and 

generate extra stores and loads, instead of working only with 
registers. 
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Sharing Aware (Partially Inclusive) L3 

• Inclusive vs. Exclusive Cache Paradigms 
– Inclusive: L3 contains L2 contains L1 (i.e. supersets). 
– Exclusive: L3, L2, and L1 are disjoint sets. 

•  L3 tracks core that last touched cacheline. 
– Read request from a different core cause L3 to retain 

copy of data in O or S state. 
–  i.e. assumes data shared, hence inclusive behavior. 

– Read from same core causes L3 to return data and 
invalidate cacheline in L3 (not retain a copy). 

–  i.e. assumes data not shared, hence exclusive cache 
behavior. 

– Writes from same core or different cores implemented 
according to exclusive cache paradigm. 
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A Few Programming Hints 

1.  Use SSE2 instructions that modify entire 128bit SSE register instead 
of preserving one half. 

2.  Generally good to prefetch 6 to 8 cachelines ahead 
  Latency-Bandwidth product estimates how much data must be “in-

flight” 
–  1P, DDR2-800 ~= 53ns * 10GB/s = 530 Bytes = ~8 cache lines in flight. 

–  2P, DDR2-667 ~= 81ns * 17GB/s = 1377 Bytes = ~21 cache lines in flight (combined 
across both Northbridges). 

–  2P, DDR2-800 ~= 81ns * 20GB/s = 1620 Bytes = ~25 cache lines in flight (combined 
across both Northbridges). 

3.   Try to have 100 cycles of computation in loop body between 
successive prefetches 

4.   Avoid issuing multiple software prefetches to the same cacheline 
5.   Unroll loops enough times so each iteration works on 1 or more 

cachelines of data. 
note: neither hw or sw prefetches will be allowed to generate page 
faults, but a TLB miss on a prefetch can initiate a TLB fill. 
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Programming Hints con’t. 

Data Less than ½  
L1 size

Less than ½ L2 size or of unknown 
size

Greater than 
½ L2 size

Reused Not Reused

Read only prefetch or 
prefetchnta

prefetch prefetchnta prefetchnta

Sequential read only hwprefetcher 
+ prefetch

hwprefetcher + 
prefetch

prefetchnta prefetchnta

Read-write prefetchw prefetchw prefetchnta prefetchnta

Sequential read-
write

prefetchw prefetchw prefetchnta prefetchnta

Write only prefetchw prefetchw movnt movnt

Sequential write only hwprefetcher 
+ prefetchw

hwprefetcher + 
prefetchw

movnt movnt

Which Prefetch to use ? 
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Performance Case Study 1 

Opteron™ (Barcelona) System 

Tyan Thunder n425QE (S4985E) 
Four Opteron 8356 CPUs @ 2.3GHz 
16 x 2GB DDR2-667 
SLES10 SP1 X86_64 
PathScale Compiler Suite 3.1 

SPEC OMPL2001 (SPEC-HPG OpenMP benchmark) 
313.swim_l (shallow water ocean model) 
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Performance Case Study 1 (slide 2) 

Three sets of compiler* flags used: 

“Ofast” (aka “generally a good set of optimizations”) 
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -mcmodel=medium 

“Ofast_simd0”  (aka “don’t vectorize”) 
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -LNO:simd=0 -mcmodel=medium 

“Ofast_movnti2500” (aka “don’t use streaming stores”) 
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -CG:movnti=2500 -mcmodel=medium 

Flags Runtime in secs. (mins.) 
Ofast 7194s  (120m) 
Ofast_simd0 1736s  (29m) 
Ofast_movnti2500 1785s  (30m) 

What’s going on? - 
Too much of a good thing? (streaming stores or vectorization) 
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Performance Case Study 1  (slide 3) 

Ofast 
samples    %       symbol name 
598797565 79.1052  __ompdo_calc3_1 
 90931114 12.0126  __ompregion_calc2_1 
 48912887  6.4617  __ompregion_calc1_1 
 17952271  2.3716  __ompdo_MAIN__1 
   153331  0.0203  __ompdo_calc3z_1 

Ofast_simd0 
samples   %       symbol name 
68233066 34.4688  __ompregion_calc2_1 
61859772 31.2492  __ompdo_calc3_1 
48931003 24.7181  __ompregion_calc1_1 
18617176  9.4047  __ompdo_MAIN__1 
  132326  0.0668  __ompdo_calc3_2 

Ofast_movnti2500 
samples   %       symbol name 
68314854 34.4881  __ompregion_calc2_1 
61749164 31.1735  __ompdo_calc3_1 
48932509 24.7031  __ompregion_calc1_1 
18770527  9.4761  __ompdo_MAIN__1 
  132286  0.0668  __ompdo_calc3_2 

Problem Size: 
7701 x 7701 grid, REAL*8  
452MB per array (5.8GB total) 

Program Structure: 
10 NCYCLE=NCYCLE+1 
  Calc1 (writes 4 arrays) 
     ... 
  Calc2 (writes 3 arrays) 
     ... 
  Calc3 (writes 6 arrays) 
     ... 
GOTO 10 

Oprofile: Counted CPU_CLK_UNHALTED events (Cycles outside of halt state) 

Profiling shows 
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Performance Case Study 1  (slide 4) 

* Pathscale ™ Compiler Suite, Version 3.1, SLES10 SP1 

Performance Counters 

Ofast = default 
Ofast_simd0 = -LNO:simd=0 
Ofast_movnti2500 = -CG:movnti=2500 
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Performance Case Study 2  
Store-to-Load Forwarding 

loop1:
  mov rbx, [rdx]
  add rax, rbx
  mov [rdx], rax
  mov rbx, [rdx+10h]
  add rax, rbx
  mov [rdx+10h], rax
  mov rbx, [rdx+20h]
  add rax, rbx
  mov [rdx+20h], rax
  mov rbx, [rdx+30h]
  add rax, rbx
  mov [rdx+30h], rax
  mov rbx, [rdx+40h]
  add rax, rbx
  mov [rdx+40h], rax
  mov rbx, [rdx+50h]
  add rax, rbx
  mov [rdx+50h], rax
  mov rbx, [rdx+60h]
  add rax, rbx
  mov [rdx+60h], rax
  mov rbx, [rdx+70h]
  add rax, rbx
  mov [rdx+70h], rax
  mov rbx, [rdx+80h]
  add rax, rbx
  mov [rdx+80h], rax
  mov rbx, [rdx+90h]
  add rax, rbx
  mov [rdx+90h], rax
  dec rcx
  jnz loop1

loop1:  
  add [rdx], rax 
  add [rdx+10h], rax 
  add [rdx+20h], rax 
  add [rdx+30h], rax 
  add [rdx+40h], rax 
  add [rdx+50h], rax 
  add [rdx+60h], rax 
  add [rdx+70h], rax 
  add [rdx+80h], rax 
  add [rdx+90h], rax 
  dec rcx 
  jnz loop1 

For (i=0; i < N; i++) { 
     Data[i % 10] = Data[i % 10] + cvalue; 
} 

Assembly Format: 
Op dst, src 

load store 

Store-to-Load forwarding (STLF) feature:  
•  Load in iteration i may get data forwarded 
from earlier Store (iteration i-1) if still in 
Load/Store queue awaiting cache write. 
•  Without STLF, Store must write cache 
then load reads cache. 

C
od

eG
en

1 

C
od

eG
en

2 Although this testcase is a 
bit artificial, it has 
similarities to code that 
might be found for 
circular buffers, CRC, etc. 
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Performance Case Study 2 (slide 2) 
Store-to-Load Forwarding  

  mov rbx, [rdx]
  add rax, rbx
  mov [rdx], rax

  add [rdx], rax 

3 x86 instructions, 
3 macro-ops,  
3+ micro-ops ,  
2 separate LSQ entries 

1 x86 instruction 
1 macro-op,  
3+ micro-ops,  
1 LSQ entry 

CodeGen1 CodeGen2 
2nd Gen. 
OpteronTM 

~12 cycles/
iteration 

~22 cycles/
iteration 

3rd Gen. 
OpteronTM 

~12 cycles/
iteration 

~12 cycles/
iteration 

CodeGen1 CodeGen2 

(Remember, 1 loop iteration 
contains 10 such snippets) 

So what’s going on ?! 
Turns out we stumbled 
on a pathological corner 
case for the 2nd Gen. 
OpteronTM ! 
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Performance Case Study 2 (slide 3) 
Store-to-Load Forwarding (STLF)  

LdSt Queue (LS2) of depth N 
STLF supported from bottom M entries (M<N) 

  mov rbx, [rdx]
  add rax, rbx
  mov [rdx], rax   add [rdx], rax 

CodeGen1 (1) 
CodeGen2 (2) 

  Separate load and store 
causes 2 LSQ entries to 
be used. 
  Fewer loop iterations 
can accumulate in LSQ 
due to lower density. 
  Lessens chance that 
load from iteration i and 
corresponding store from 
iteration i-1 will both 
reside in top N-M entries. 
  Most STLF opportunities 
will succeed because 
store will be in bottom M 
entries and can forward 
data. 

  Combined ld-op-st 
instruction means 1 LSQ 
entry will be used. 
  More loop iterations can 
accumulate in LSQ due to 
higher density. 
  Increases chance that 
there will be a load op for 
iteration i that wants store 
forwarding of data from 
corresponding instruction 
in iteration i-1 AND both 
reside in top N-M entries. 
  Since STLF not allowed 
there, this can cause more 
pipeline bubbles. 1 (oldest) 

N (youngest) 

(M Stores can be  
forwarded to 
younger loads) 

(N-M Stores can’t 
be forwarded to  
younger loads) 

LS2 Queue 

Load / Store u-ops 

M 

Store (iter i-1) 

Load (iter i) 

STLF 

Store (iter i-1) 

STLF 
OK 

(2) 

(1) 
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Performance Case Study 2 (slide 4) 
Store-to-Load Forwarding (STLF) 
•  How would I figure something like this out ? 

• not easily, intuition, unusual performance delta between platforms 

• CrayPAT – unexpected differences in IPC, LS2 full, canceled STLF ops. 

•  What can I do about it ? 
• Manually try different unroll factors 

• PGI 

•  -Munroll, -Munroll=c:x, -Munroll=n:x, -Munroll=m:x  (“x” = unroll factor) 

• Pathscale 

• -CG:load_exe=N  (threshold for subsuming loads into arithmetics - produces CodeGen2). 

• -LNO:full_unroll_size, etc. 

Bottom Line: No one size fits all approach, but knowing what’s in your 
toolbox, allows you to try different things based on intuition, experience. 

“Proof of the pudding is in the eating” 
Often (intelligently) trying things is 

quickest. 
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Summary 
1.  Don’t sweat all the details – there is more here than an application 

writer needs (or should) try to optimize for. 

2.  High level understanding can help avoid some of the worst case 
performance pitfalls. 

3.  Your goal should be to make the compiler and hardware’s jobs 
easier where feasible. 
  Compiler’s negative feedback is useful. 

  Performance counters can help. 

4.  Some Hardware Features to Keep in Mind: 
  Improvements to Core IPC, TLB, HW prefetch, FPU, and memory BW and latency. 

  Flop rich programming environment. 

  Shared L3 (data sharing aware). 

  Be aware of NUMA when coding (have two-socket compute nodes). 

  Many cores and caches requires some awareness regarding cachelines and 
coherency. 
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Questions 

Cray-1 (160 - 250 MFlops) 

Cray XT5 Jaguar (1.3 PFlops = 5.2 million X Cray-1) 
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